clustur was developed to be similar to mothur’s cluster function
that was written in C++. In order to cluster your data, users need to
provide their own sparse or phylip-formatted distance matrix. They also
need to provide a count table that either comes from mothur or that they
create in R. Once these objects are built users can call the
cluster()
function. We currently support 5 methods:
opticlust (default) and furthest, nearest, weighted, and average
neighbor. The opticlust method is cluster()
and mothur’s
default. The speed of the methods implemented in {clustur} and mothur
are comparable; {clustur} may even be faster! Below we will show you how
to create your sparse matrix and count table. If you do not have a count
table, clustur can produce one from you, but it will assume the
abundance of each sequence is one and it will only cluster the sequences
in the distance matrix. The output of running clustur()
includes what is typically provided in a mothur-formatted shared
file.
For the official release from CRAN you can use the standard
install.packages()
function:
For the developmental version, you can use the
install_github()
function from the {devtools} package
Because {clustur}’s functions make use of a random number generator, users are strongly encouraged to set the seed.
clustur will produce the same output using either a sparse (default) or full count table
clustur will read both mothur’s column/sparse distance matrix and Phylip-formatted distance matrix formats.
or
The return value of distance_data
will be a memory
address. If you want a data frame version of the distances, you can use
get_distance_df(distance_data)
.
get_distance_df(column_distance)
#> FirstName SecondName Distance
#> 1 U68638 U68618 0.020396
#> 2 U68638 U68620 0.020396
#> 3 U68638 U68658 0.027067
#> 4 U68618 U68620 0.000000
#> 5 U68618 U68658 0.022512
#> 6 U68620 U68658 0.022512
#> 7 U68641 U68667 0.000000
#> 8 U68641 U68673 0.018238
#> 9 U68667 U68673 0.018238
#> 10 U68636 U68631 0.006024
#> 11 U68680 U68615 0.003141
#> 12 U68679 U68663 0.020354
#> 13 U68679 U68665 0.017144
#> 14 U68679 U68688 0.009987
#> 15 U68665 U68663 0.012295
#> 16 U68665 U68688 0.008059
#> 17 U68663 U68688 0.020272
get_distance_df(phylip_distance)
#> FirstName SecondName Distance
#> 1 U68615 U68680 0.003141
#> 2 U68618 U68620 0.000000
#> 3 U68618 U68638 0.020396
#> 4 U68618 U68658 0.022512
#> 5 U68620 U68638 0.020396
#> 6 U68620 U68658 0.022512
#> 7 U68631 U68636 0.006024
#> 8 U68638 U68658 0.027067
#> 9 U68641 U68667 0.000000
#> 10 U68641 U68673 0.018238
#> 11 U68663 U68665 0.012295
#> 12 U68663 U68679 0.020354
#> 13 U68663 U68688 0.020272
#> 14 U68665 U68679 0.017144
#> 15 U68665 U68688 0.008059
#> 16 U68667 U68673 0.018238
#> 17 U68679 U68688 0.009987
The default method for clustering in cluster
is
“opticlust”
All methods produce a list object with an indicator of the cutoff
that was used (label
), as well as cluster composition
(cluster
) and shared (abundance
) data frames.
The clusters
data frame shows which OTU (Operation
Taxonomic Unit) each sequence was assigned to. The
abundance
data frame contains columns indicating the
OTU
and sample
identifiers and the abundance
of each OTU in each sample. The OptiClust method also includes the
metrics
data frame, which describe the optimization value
for each iteration in the fitting process; the data in
clusters
and shared
are taken from the last
iteration. clustur provides getter functions, get_label()
,
get_clusters()
, get_shared()
, and
get_metrics()
, which will be demonstrated below.
clusters <- cluster(column_distance, cutoff, method = "opticlust")
get_cutoff(clusters)
#> [1] 0.03
get_bins(clusters)
#> feature bin
#> 1 U68630 bin1
#> 2 U68595 bin2
#> 3 U68600 bin3
#> 4 U68591 bin4
#> 5 U68647 bin5
#> 6 U68661 bin6
#> 7 U68605 bin7
#> [ reached 'max' / getOption("max.print") -- omitted 81 rows ]
get_abundance(clusters)
#> samples otu abundance
#> 1 pasture otu1 0
#> 2 forest otu1 1
#> 3 pasture otu2 0
#> 4 forest otu2 1
#> 5 pasture otu3 0
#> [ reached 'max' / getOption("max.print") -- omitted 171 rows ]
get_metrics(clusters)
#> $metrics
#> label cutoff specificity ppv ttp f1score tn
#> 1 0.030000 0.030000 1.000000 1.000000 17.000000 1.000000 4736.000000
#> mcc fn fp sensitivity npv fdr accuracy
#> 1 1.000000 0.000000 0.000000 1.000000 1.000000 1.000000 1.000000
#>
#> $iteration_metrics
#> iter time label num_otus cutoff tp tn fp fn sensitivity specificity ppv
#> npv fdr accuracy mcc f1score
#> [ reached 'max' / getOption("max.print") -- omitted 3 rows ]