Package: mikropml 1.6.1.9000
mikropml: User-Friendly R Package for Supervised Machine Learning Pipelines
An interface to build machine learning models for classification and regression problems. 'mikropml' implements the ML pipeline described by Topçuoğlu et al. (2020) <doi:10.1128/mBio.00434-20> with reasonable default options for data preprocessing, hyperparameter tuning, cross-validation, testing, model evaluation, and interpretation steps. See the website <https://www.schlosslab.org/mikropml/> for more information, documentation, and examples.
Authors:
mikropml_1.6.1.9000.tar.gz
mikropml_1.6.1.9000.zip(r-4.5)mikropml_1.6.1.9000.zip(r-4.4)mikropml_1.6.1.9000.zip(r-4.3)
mikropml_1.6.1.9000.tgz(r-4.4-any)mikropml_1.6.1.9000.tgz(r-4.3-any)
mikropml_1.6.1.9000.tar.gz(r-4.5-noble)mikropml_1.6.1.9000.tar.gz(r-4.4-noble)
mikropml_1.6.1.9000.tgz(r-4.4-emscripten)mikropml_1.6.1.9000.tgz(r-4.3-emscripten)
mikropml.pdf |mikropml.html✨
mikropml/json (API)
NEWS
# Install 'mikropml' in R: |
install.packages('mikropml', repos = c('https://schlosslab.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/schlosslab/mikropml/issues
- otu_data_preproc - Mini OTU abundance dataset - preprocessed
- otu_mini_bin - Mini OTU abundance dataset
- otu_mini_bin_results_glmnet - Results from running the pipeline with L2 logistic regression on 'otu_mini_bin' with feature importance and grouping
- otu_mini_bin_results_rf - Results from running the pipeline with random forest on 'otu_mini_bin'
- otu_mini_bin_results_rpart2 - Results from running the pipeline with rpart2 on 'otu_mini_bin'
- otu_mini_bin_results_svmRadial - Results from running the pipeline with svmRadial on 'otu_mini_bin'
- otu_mini_bin_results_xgbTree - Results from running the pipeline with xbgTree on 'otu_mini_bin'
- otu_mini_cont_results_glmnet - Results from running the pipeline with glmnet on 'otu_mini_bin' with 'Otu00001' as the outcome
- otu_mini_cont_results_nocv - Results from running the pipeline with glmnet on 'otu_mini_bin' with 'Otu00001' as the outcome column, using a custom train control scheme that does not perform cross-validation
- otu_mini_cv - Cross validation on 'train_data_mini' with grouped features.
- otu_mini_multi - Mini OTU abundance dataset with 3 categorical variables
- otu_mini_multi_group - Groups for otu_mini_multi
- otu_mini_multi_results_glmnet - Results from running the pipeline with glmnet on 'otu_mini_multi' for multiclass outcomes
- otu_small - Small OTU abundance dataset
Last updated 1 years agofrom:77669ee3fb. Checks:OK: 3 NOTE: 4. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 15 2024 |
R-4.5-win | NOTE | Nov 15 2024 |
R-4.5-linux | NOTE | Nov 15 2024 |
R-4.4-win | NOTE | Nov 15 2024 |
R-4.4-mac | NOTE | Nov 15 2024 |
R-4.3-win | OK | Nov 15 2024 |
R-4.3-mac | OK | Nov 15 2024 |
Exports::=!!.data%>%bootstrap_performancecalc_balanced_precisioncalc_baseline_precisioncalc_mean_perfcalc_mean_prccalc_mean_roccalc_model_sensspeccalc_perf_metricscombine_hp_performancecompare_modelscontr.ltfrdefine_cvget_caret_processed_dfget_feature_importanceget_hp_performanceget_hyperparams_listget_outcome_typeget_partition_indicesget_perf_metric_fnget_perf_metric_nameget_performance_tblget_tuning_gridgroup_correlated_featurespermute_p_valueplot_hp_performanceplot_mean_prcplot_mean_rocplot_model_performancepreprocess_datarandomize_feature_orderremove_singleton_columnsreplace_spacesrun_mltidy_perf_datatrain_model
Dependencies:bitopscaretcaToolsclasscliclockcodetoolscolorspacecpp11data.tablediagramdigestdplyre1071fansifarverforeachfuturefuture.applygenericsggplot2glmnetglobalsgluegowergplotsgtablegtoolshardhatipredisobanditeratorsjsonlitekernlabKernSmoothlabelinglatticelavalifecyclelistenvlubridatemagrittrMASSMatrixmgcvMLmetricsModelMetricsmunsellnlmennetnumDerivparallellypillarpkgconfigplyrpROCprodlimprogressrproxypurrrR6randomForestRColorBrewerRcppRcppEigenrecipesreshape2rlangROCRrpartscalesshapeSQUAREMstringistringrsurvivaltibbletidyrtidyselecttimechangetimeDatetzdbutf8vctrsviridisLitewithrxgboost
Introduction to mikropml
Rendered fromintroduction.Rmd
usingknitr::rmarkdown
on Nov 15 2024.Last update: 2023-02-15
Started: 2020-07-01
mikropml: User-Friendly R Package for Supervised Machine Learning Pipelines
Rendered frompaper.Rmd
usingknitr::rmarkdown
on Nov 15 2024.Last update: 2022-11-01
Started: 2020-10-15